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Summary

Cellular senescence is a process that results from a variety of

stresses, leading to a state of irreversible growth arrest. Senes-

cent cells accumulate during aging and have been implicated in

promoting a variety of age-related diseases. Mitochondrial stress

is an effective inducer of cellular senescence, but the mechanisms

by which mitochondria regulate permanent cell growth arrest are

largely unexplored. Here, we review some of the mitochondrial

signaling pathways that participate in establishing cellular

senescence. We discuss the role of mitochondrial reactive oxygen

species (ROS), mitochondrial dynamics (fission and fusion), the

electron transport chain (ETC), bioenergetic balance, redox state,

metabolic signature, and calcium homeostasis in controlling

cellular growth arrest. We emphasize that multiple mitochondrial

signaling pathways, besides mitochondrial ROS, can induce

cellular senescence. Together, these pathways provide a broader

perspective for studying the contribution of mitochondrial stress

to aging, linking mitochondrial dysfunction and aging through

the process of cellular senescence.
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Introduction

Mitochondria generate reactive oxygen species (ROS) in the form of

superoxides as byproducts of the inefficient transfer of electrons across

the electron transport chain (ETC) (Quinlan et al., 2013). Superoxide

radicals can further react to form other ROS, such as hydrogen peroxides

and hydroxyl radicals. These superoxides and other ROS can damage the

mitochondria and further decrease the efficiency of the mitochondrial

ETC, resulting in a positive feedback loop of mitochondrial ROS

generation and mitochondrial oxidative damage (Balaban et al., 2005).

For decades, this accumulation of mitochondrial oxidative damage with

age has been proposed to contribute to aging and age-related

phenotypes (Harman, 1956). This is the basis for the free radical theory

of aging. However, while several studies support the free radical theory

of aging (Melov et al., 2001; Kirby et al., 2002), other reports are now

showing that increased ROS production does not always shorten lifespan

(Van Raamsdonk & Hekimi, 2012), and can even promote longevity (Van

Raamsdonk & Hekimi, 2009; Yee et al., 2014). This suggests that steady

increase in ROS generation as described by the free radical theory of

aging may not be sufficient to explain the phenotypes associated with

aging. Hence, other factors may contribute to the aging process.

Cellular senescence, which is a biological process that causes cells to

reach a state of irreversible growth arrest (Hayflick & Moorhead, 1961),

may be an important factor that contributes to the aging phenotype.

Indeed, senescent cells accumulate with age (Jeyapalan et al., 2007) and

are thought to promote age-related phenotypes. Elimination of senes-

cent cells delays age-related pathologies in a mouse model of aging

(Baker et al., 2011). Senescent cells can contribute to aging by

accelerating loss of tissue regeneration through depletion of stem cells

and progenitors cells (Campisi & D’Adda di Fagagna, 2007). They also

secrete several cytokines, growth factors, and proteases, collectively

termed as senescence-associated secretory phenotype (SASP) (Copp�e

et al., 2008). These SASP factors have multiple autocrine and paracrine

activities, which are capable of altering tissue homeostasis (Krtolica

et al., 2001; Copp�e et al., 2008). Hence, cellular senescence is

implicated in several pathological conditions associated with aging

(Campisi, 2013).

Cellular senescence is accompanied by an increase in cell size

(Hayflick & Moorhead, 1961), lysosomal content (Kurz et al., 2000),

and senescence-associated b-galactosidase (SA-bgal) activity (Dimri

et al., 1995; Kurz et al., 2000). It is associated with decreased nuclear

expression of lamin B1 (Freund et al., 2012) and release of high-

mobility group box 1 (HMGB1) proteins (Davalos et al., 2013). It is

often correlated with the presence of nuclear DNA damage foci (Rodier

et al., 2009) and chromatin alterations (Narita et al., 2003). It is

induced by multiple factors, such as repeated cell culture, telomere

attrition, irradiation, oncogene activation, and oxidative damage

(Hayflick & Moorhead, 1961; Campisi & D’Adda di Fagagna, 2007).

It can also be caused by the perturbation of mitochondrial homeostasis

(Fig. 1), which may accelerate age-related phenotypes (Sahin &

DePinho, 2010, 2012). While several studies already show that

mitochondrial defects can promote cellular senescence (Passos et al.,

2007; Moiseeva et al., 2009; Velarde et al., 2012), the mechanisms

involved in this regulation are poorly understood. Because mitochon-

dria can generate ROS (Quinlan et al., 2013), it is proposed that

excessive mitochondrial ROS is important to establish cellular senes-

cence. This has been an attractive model because of its consistency

with the free radical theory of aging. However, other mitochondrial

factors may be equally or even more important to induce cellular

senescence.

In this review, we summarize the mechanisms involved in the

contribution of mitochondria to senescence. In addition to mitochon-

drial-derived ROS production, we also discuss the role of other

mitochondrial effectors, such as impaired mitochondrial dynamics,

defective ETC, imbalanced bioenergetics, altered redox state, altered
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metabolism, and dysregulated calcium homeostasis, in establishing

permanent growth arrest (Fig. 1).

Mitochondrial free radical theory of aging and
cellular senescence

The free radical theory of aging has been adapted to the study of cellular

senescence. Many studies show that ROS can induce cellular senescence.

Indeed, hydrogen peroxide (H2O2), which is considered as the major ROS

within the cell, is a potent inducer of cellular senescence in many cell

types (Ben-Porath & Weinberg, 2005). While exogenous treatment with

H2O2 can promote cellular senescence, endogenous ROS (such as

superoxides and hydroxyl radicals) is also implicated in the establishment

and maintenance of the irreversible growth arrest. Excessive production

of ROS is associated with the implementation of replicative senescence,

oncogene-induced senescence, and p16INK4A-induced senescence

(Colavitti & Finkel, 2005; Passos et al., 2007, 2010; Lu & Finkel, 2008;

Moiseeva et al., 2009; Imai et al., 2014). A positive feedback loop of

mitochondrial damage, ROS production, and DNA damage response by

the activation of p53/p21CIP1/WAF1 pathway is required for the estab-

lishment of the growth arrest phenotype during cellular senescence

(Macip et al., 2002; Passos et al., 2010; Luo et al., 2011). The steady

increase in ROS production by this positive feedback loop is shown to

replenish short-lived DNA damage foci and maintain an ongoing DNA

damage response, which are thought to be both necessary and sufficient

to establish and maintain cell cycle arrest during the early development

of the senescence phenotype (Passos et al., 2010). However, this loop is

no longer required to maintain the growth arrest phenotype at time

points later than 9 days after initiation of senescence, suggesting that

ROS production is dispensable once the senescent phenotype is fully

established.

Aside from the p53/p21CIP1/WAF1 pathway, the p16INK4A/Rb pathway

can also promote a ROS-dependent positive feedback loop, which

reinforces the irreversible cell cycle arrest in senescent cells, partly

Fig. 1 Perturbation of mitochondrial homeostasis promotes the establishment and maintenance of cellular senescence during aging. Mitochondria are damaged over time

leading to perturbation of mitochondrial homeostasis. Loss of proper mitochondrial homeostasis can promote cellular senescence through (1) excessive ROS production

(orange), (2) impaired mitochondrial dynamics (brown), (3) electron transport chain defect (blue), (4) bioenergetics imbalance and increased AMPK activity (red), (5)

decreased mitochondrial NAD+ and altered metabolism (green), and (6) mitochondrial calcium accumulation (purple). These mitochondrial signals trigger p53/p21 and/or

p16/pRb pathways and ultimately lead to cellular senescence, which subsequently promotes age-related phenotypes, such as loss of tissue regeneration and function.
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through the downregulation of large tumor suppressor kinase 1 (LATS1),

a kinase required for cytokinesis (Takahashi et al., 2006). Moreover,

decreasing ROS levels by treatment with the mitochondria-targeted

antioxidant MitoQ delays replicative senescence (Saretzki et al., 2003).

While several studies implicate the role of ROS during cellular

senescence, others also suggest that mitochondrial ROS generation may

not necessarily be the primary cause of cellular senescence. One study

using an empirical mathematical model (stochastic step model of

replicative senescence) suggests that increased mitochondrial ROS

production in replicative senescent cells is a consequence of the

senescence phenotype rather than the reverse (Lawless et al., 2012).

Another report shows that over-expression of the mitochondrial

localized antioxidant superoxide dismutase 2 (SOD2) and the mitochon-

drial targeted catalase are not sufficient to inhibit the senescence

phenotype in hyperoxia-induced senescent cells (Klimova et al., 2009).

Because ROS are produced by mitochondrial and nonmitochondrial

enzymes during hyperoxia (70% O2), the inability of mitochondrial

antioxidants to reverse growth arrest in hyperoxia-induced senescence

suggests that cytosolic ROS may be sufficient to induce growth arrest.

Hence, the mechanisms involved in linking mitochondrial ROS and

cellular senescence still need to be further studied.

Because mitochondria influence many cellular processes, accumula-

tion of mitochondrial oxidative damage, as proposed in the free radical

theory of aging, may be an oversimplification of the signaling

mechanisms involved in the establishment of cellular senescence. It is

also possible that mitochondrial ROS can act as signaling molecules to

trigger cellular senescence, independent of mitochondrial oxidative

damage, although this hypothesis still needs to be proven. It is then

necessary to go beyond the free radical theory and examine other

mitochondrial effectors that may be involved in the irreversible cell

growth arrest.

Mitochondrial dynamics and cellular senescence

Mitochondria are known to be highly dynamic organelles. They are able

to divide and combine through the process of fission and fusion,

allowing them to adjust their size, shape, and organization inside the cell

(Chan, 2006). Mitochondrial dynamics are regulated during cell division,

apoptosis, autophagy, mitochondrial biogenesis, and mtDNA integrity

maintenance (Detmer & Chan, 2007) and are implicated in aging (Seo

et al., 2010). In mammalian cells, dynamin 1-like (DNM1L or DRP1) and

fission 1 (FIS1) are involved in the fission process, while optic atrophy 1

(OPA1) and mitofusin 1 & 2 (MFN1 and MFN2) participate in the fusion

process.

Altering mitochondrial dynamics can cause mitochondrial defects

(Detmer & Chan, 2007; Seo et al., 2010), and in some cases, the

implementation of cellular senescence (Jendrach et al., 2005; Yoon

et al., 2006; Lee et al., 2007; Mai et al., 2010; Park et al., 2010; Hara

et al., 2013). Maintenance of elongated mitochondria by blocking the

fission process through FIS1 depletion leads to the establishment of

senescence (Lee et al., 2007). Depletion of membrane-associated ring

finger C3HC4 5 (MARCH5), a mitochondrial E3 ubiquitin ligase, which

blocks DRP1 activity and elongates mitochondria, also induces senes-

cence (Park et al., 2010). These data suggest that senescent cells are

typically associated with an overall shift toward more fusion events,

resulting in the presence of abnormally enlarged mitochondria.

While studies correlate elongated mitochondria with the establish-

ment of cellular senescence, it is still unclear how mitochondrial fusion

contributes to the permanent cell growth arrest phenotype or whether

mitochondrial fusion is merely a response to cellular stress. Some studies

show that prolonged elongated mitochondria result in higher production

of intracellular ROS and lower activity of mitochondrial respiration,

which then ultimately leads to cellular senescence (Yoon et al., 2006).

However, others suggest that mitochondrial fusion may protect a cell

from excessive mitochondrial stress by maintaining a functional popu-

lation of mitochondria within a cell (Chen et al., 2005). Mitochondrial

fusion, in response to cellular stress, allows mitochondria to possess

more cristae, stimulate more ATP synthase activity, maintain ATP

production, and escape autophagic degradation (Gomes et al., 2011).

Moreover, increasing mitochondrial fusion also prevents mitochondrial

membrane depolarization, inhibits cytochrome c release, and promotes

resistance to apoptosis (Frank et al., 2001; Karbowski et al., 2002;

Beckenridge et al., 2003; Brooks et al., 2009). Hence, mitochondrial

fusion can also provide a way for defective mitochondria to restore their

essential components and regain their cellular function. Whether this

pro-survival response after mitochondrial stress predisposes cells to

senesce instead of apoptose remains to be determined.

There are still many remaining questions regarding the role of

mitochondrial dynamics and cellular senescence. It is still unknown

whether changes in mitochondrial morphology play a significant role in

establishing senescence or whether these changes are merely a

consequence of the process. Nonetheless, current data do suggest that

changes in mitochondrial dynamics can promote cellular senescence

(Fig. 1). Elucidating the consequences of prolonged elongated mito-

chondria on cell signaling and cellular function may help determine the

mechanisms involved in cell growth arrest following mitochondrial

stress.

Mitochondrial electron transport chain and cellular
senescence

In addition to altered mitochondrial dynamics, damage to the mito-

chondrial ETC is also a form of mitochondrial stress, shown to cause

cellular senescence (Fig. 1). Indeed, pharmacological inhibition and

genetic loss of function of the ETC can lead to premature senescence.

Inhibition of complex I by rotenone or of complex II by 2-thenoyltriflu-

oroacetone (TFFA) induces cellular senescence (Yoon et al., 2003;

Moiseeva et al., 2009). Similarly, knockdown of the mitochondrial

Rieske iron-sulfur polypeptide (RISP), which is involved in the transport of

electrons to complex III, also drives senescence in human fibroblasts

(Moiseeva et al., 2009). Inhibition of mitochondrial complex III by

antimycin A also promotes a cell proliferation arrest and premature

senescence, as evident by upregulation of the cyclin-dependent kinase

inhibitors p16INK4A and p21CIP1/WAF1 (St€ockl et al., 2006).

The Mitochondrial ETC requires a proton gradient across the

mitochondrial membrane to function (Saraste, 1999). Hence, mitochon-

drial depolarization stalls the mitochondrial ETC and promotes mito-

chondrial defect. Interestingly, loss of this proton gradient by uncouplers

such as carbonylcyanide-p-trifluoromethoxyphenylhydrazone (FCCP) also

induces cellular senescence in human fibroblasts (St€ockl et al., 2007),

further supporting the consequence of defective mitochondrial ETC to

establish cellular senescence.

While several evidences show that inhibition of the ETC leads to

cellular senescence, the specific signaling pathway linking the ETC defect

and growth arrest is still unclear. One speculation is that impaired ETC

can increase ROS production and promote mitochondrial damage, which

then results in cellular senescence. However, this hypothesis still needs to

be critically tested.

Studies suggest that there is an age-dependent decrease in the ETC.

In vivo, such as those in flies (McCarroll et al., 2004; Ferguson et al.,
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2005), worms (McCarroll et al., 2004), and monkeys (Kayo et al.,

2001), commonly through a downregulation of genes involved in the

ETC function. Agents such as mitochondrial oxidative damage,

mitochondrial DNA mutation, and environmental factors can all

damage the ETC (Li et al., 1995; Vermulst et al., 2008; Krutmann &

Schroeder, 2009), but which of these factors is the primary driver of

ETC defects in vivo remains debatable. Further research needs to be

performed to identify the specific pathway most relevant during the

aging process.

Mitochondrial bioenergetic balance and cellular
senescence

The mitochondrial ETC produces ATP as an important source of cellular

energy during aerobic respiration. Defects in the ETC lead to a drop in

ATP production and can result in the induction of cellular senescence

(Fig. 1). Indeed, inhibition of ATP synthesis triggers senescence, as

observed by upregulation of p16INK4A and p21CIP1/WAF1 expression

(St€ockl et al., 2006). Decrease in ATP production can also increase AMP

(or ADP) to ATP ratio, creating a bioenergetic imbalance within the cell.

Interestingly, some reports do show an increased AMP to ATP ratio

during cellular senescence (Wang et al., 2003; Zwerschke et al., 2003).

Elevation of AMP to ATP ratios by depleting ATP levels or by addition of

exogenous AMP promotes cellular growth arrest and senescence

features (Zwerschke et al., 2003).

Increased AMP (or ADP) to ATP ratios stimulate AMP-activated

protein kinase (AMPK), which is known to be a central mediator of

cellular metabolism in eukaryotes (Mihaylova & Shaw, 2011). AMPK

activation induces cell cycle arrest in many cells, including mouse

embryonic cells (MEFs), human fibroblasts, human cancer cells, and fly

eye cells (Jones et al., 2005; Rattan et al., 2005; Owusu-Ansah et al.,

2008; Humbert et al., 2010; Mandal et al., 2010; Hou et al., 2011;

Peyton et al., 2012). Multiple distinct AMPK-related mechanisms have

been described in establishing and maintaining cellular senescence

(Fig. 1). One mechanism involves an AMPK-dependent pathway and the

other an AMPK-related protein kinase 5 (ARK5 or NUAK1)-dependent

pathway. Persistent activation of AMPK increases p53 expression and

phosphorylation, upregulates p21CIP1/WAF1 and p27 expression (Peyton

et al., 2012), and promotes a p53-dependent senescence (Jones et al.,

2005; Jiang et al., 2013). Activated AMPK also induces cell cycle arrest

by downregulating pro-proliferation genes, such as cyclin A, cyclin B1,

and cyclin E (Wang et al., 2002, 2003; Mandal et al., 2010; Peyton

et al., 2012). AMPK also inhibits the RNA-stabilizing factor human

antigen R (HuR), which destabilizes p16INK4A, leading to increased

p16INK4A expression and ultimately to senescence (Wang et al., 2002,

2003). AMPK activation reduces retinoblastoma protein phosphorylation

(Peyton et al., 2012), leading to the inhibition of cell proliferation.

Furthermore, activation of the AMPK-related protein ARK5 promotes

senescence either through a p53/p21CIP1/WAF1-dependent pathway (Hou

et al., 2011) or through a p53-independent LATS1-dependent pathway

(Humbert et al., 2010).

AMPK activity is highly increased in oncogene-induced senescent cells

(Moiseeva et al., 2009). In contrast, inactivation of the AMPK pathway is

known to promote cancer (Bardeesy et al., 2002; Huang et al., 2008b;

Shackelford & Shaw, 2009; Zhou et al., 2009), further supporting the

role of AMPK in establishing growth arrest and tumor suppression.

Hence, studies emphasizing the impact of mitochondrial bioenergetic

balance and subsequent AMPK activation may provide insights into the

mechanisms involved in establishing cellular senescence and their

contribution to aging and age-related phenotypes.

Mitochondrial metabolites and cellular senescence

Protein complexes in the mitochondrial ETC produce important cofactors

and metabolites necessary for cellular function. Complex I of the ETC

oxidizes the reduced form of nicotinamide adenine dinucleotide (NADH)

into NAD+, which is a cofactor of many intracellular enzymes.

Interestingly, depletion of NAD+ is implicated in cellular senescence

(Fig. 1). Indeed, impaired NAD+ salvage pathway induces premature

senescence, while activation of the NAD+ salvage pathway extends

cellular replicative lifespan (van der Veer et al., 2007; Borradaile &

Pickering, 2009; Ho et al., 2009). Furthermore, depletion of cytosolic

malate dehydrogenase (MDH1), a key component in the malate–

aspartate shuttle, which transfers reducing equivalents of NADH across

the inner mitochondrial membrane, results in a decrease in NAD+/NADH

ratio, AMPK activation, and cellular senescence (Lee et al., 2012).

Increased NAD+/NADH ratios seem to limit oxidative stress by enhancing

aerobic glycolysis, which supports proliferation while limiting ROS

production (Borradaile & Pickering, 2009).

NAD+ is required for many enzymatic reactions, such as those

involved in glycolysis, the tricarboxylic acid (TCA) cycle, DNA repair, and

protein acetylation. For example, NAD+ is essential for the activities of

poly-ADP ribose polymerases (PARPs), which are important for DNA

repair and for the activities of sirtuins, which constitute a class of protein

deacetylases implicated in aging and longevity (Longo & Kennedy, 2006;

Haigis & Sinclair, 2010). PARPs and sirtuins are known to play roles in

cellular senescence. PARPs prevent cellular senescence by promoting

repair of DNA strand breaks in response to genotoxic stress (Efimova

et al., 2010). Sirtuin 1 antagonizes senescence by deacetylating p53 in

MEFs (Langley et al., 2002), activating ERK/S6K1 signaling pathway in

human fibroblasts (Huang et al., 2008a), and preventing LKB1 depen-

dent-AMPK activation in porcine endothelial cells (Zu et al., 2010).

Another NAD+-dependent protein implicated in senescence is malic

enzyme, which converts malate into pyruvate. Depletion of the

mitochondrial NAD(P)+-dependent malic enzyme (ME2) triggers p53-

dependent senescence by increasing ROS level and activating AMPK

(Jiang et al., 2013). Taken together, these data indicate that mitochon-

drial depletion of NAD+ levels and subsequent decreased activity of NAD+

-dependent enzymes can ultimately lead to cellular senescence.

Besides NAD+, other metabolites are also produced in the mitochon-

dria. Several metabolic intermediates of the TCA cycle can influence

cellular function and potentially contribute to aging and age-related

phenotypes (Salminen et al., 2014). Senescent cells are associated with

altered metabolism, such as decreased aerobic glycolysis, increased

alanine production, decreased overall ribonucleotide triphosphate con-

tent (Wang et al., 2003; Zwerschke et al., 2003), reduced lipid synthesis,

and enhanced fatty acid oxidation (Quijano et al., 2012), but whether

these changes are causes or consequences of cellular senescence

remains unclear. One study suggests that increasing pyruvate consump-

tion and cellular respiration by overexpression of the mitochondrial

enzyme pyruvate dehydrogenase (PDH) enhances BRAFV600E oncogene-

induced senescence (Kaplon et al., 2013). Another study reveals that

senescence-associated telomere dysfunction is sufficient to perturb

mitochondrial function, through a p53-dependent downregulation of

the mitochondrial master regulators such as peroxisome proliferator-

activated receptor gamma, coactivator one alpha and beta (Sahin et al.,

2011).

While several reports implicate the role of mitochondrial metabolites

in establishing senescence, the particular mechanism on how these

cofactors can promote cell cycle arrest remains elusive. Because studies

regarding the role of the different metabolites on cellular senescence are
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limited, understanding the metabolic signature of senescent cells and

whether this altered metabolic profile contributes to permanent cell

cycle arrest are important avenues to explore in future.

Mitochondrial calcium homeostasis and cellular
senescence

As mentioned above, mitochondria require a proton gradient across

their membrane for the ETC to function. Disrupting this mitochondrial

membrane potential can result in decreased ATP production and cellular

senescence. Mitochondria import calcium to maintain ETC function and

intracellular calcium homeostasis (Gunter et al., 2004), but as a

consequence of increased uptake, this also depolarizes the mitochon-

dria, decreases overall ATP production (Nguyen & Jafri, 2005), elevates

cytosolic NADH, and reduces sirtuin activity (Marcu et al., 2014), which

can all lead to cellular senescence (Fig. 1). Indeed, accumulation of

mitochondrial calcium is implicated in oncogene-induced senescence

and replicative senescence (Bolinches-Amor�os et al., 2014; Wiel et al.,

2014, 2014). Consistently, loss of functional calcium channels, such as

mitochondrial calcium uniporter (MCU), prevents calcium uptake by the

mitochondria, resulting in the escape from oncogene-induced senes-

cence (Wiel et al., 2014).

While the accumulation of calcium in the mitochondria disrupts

mitochondrial membrane potential, mitochondria do maintain low levels

of calcium and act as intracellular calcium reservoirs (Butow & Avadhani,

2004). In response to stress, mitochondria can release these calcium ions

and trigger a retrograde response, which signals to the nucleus and

activates specific nuclear transcription factors (Butow & Avadhani,

2004). One of these transcription factors, cAMP-responsive element

binding protein 1 (CREB), upregulates p21CIP1/WAF1 expression and acts

as a potent inhibitor of cell proliferation (Arnould et al., 2002). While the

retrograde response is an attractive mechanism for mitochondrial stress-

induced senescence, this hypothesis needs to be further confirmed.

Understanding the contribution of calcium homeostasis to permanent

cell cycle arrest may potentially offer new perspectives in linking

mitochondrial stress and cellular senescence.

Conclusion

In this review, we report the different mechanisms by which mitochon-

dria contribute to the implementation of cellular senescence. We

propose a model where the mitochondrion acts as a key player in

promoting and establishing permanent growth arrest. We suggest that

perturbation of mitochondrial homeostasis triggers cellular senescence,

which can ultimately lead to age-associated pathologies (Fig. 1).

Multiple mitochondrial factors, such as excessive mitochondrial ROS

production, aberrant mitochondrial dynamics, defective electron trans-

port chain, imbalanced bioenergetics, activated AMPK, decreased NAD+

levels, altered metabolism, and dysregulated mitochondrial calcium

homeostasis, contribute to the establishment of irreversible growth

arrest (Fig. 1). All of these different mitochondrial signaling pathways

can regulate each other, but how these factors cooperate to promote

cellular senescence, and whether these pathways are conserved in all

senescent cells still remains unclear. Nonetheless, studying these

different factors can provide new insights into the mechanisms involved

in mitochondrial dysfunction-associated senescence. Because both

mitochondrial defects and cellular senescence accumulate with age,

linking the pathways involved in these two phenomena may help us

understand the biology of aging, providing new potential targets to

treat age-related diseases.
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